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Executive Summary 

 
The effectiveness of traditional incident detection is often limited by sparse sensor 

coverage, and reporting incidents to emergency response systems is labor-intensive. This 

research project mines tweet texts to extract incident information on both highways and 

arterials as an efficient and cost-effective alternative to existing data sources. This 

research report presents a methodology to crawl, process and filter tweets that are 

accessible by the public for free. Tweets are acquired from Twitter using the 

representational state transfer (REST) Application Program Interfaces (API) in real time. 

The process of adaptive data acquisition establishes a dictionary of important keywords 

and their combinations that can imply traffic incidents (TI). A tweet is 

then mapped into a high dimensional binary vector in a feature space formed by the 

dictionary, and classified into either TI related or not. All the TI tweets are then geocoded 

to determine their locations, and further classified into one of the five incident categories. 

 

We apply the methodology in two regions, the Pittsburgh and Philadelphia Metropolitan 

Areas. Overall, mining tweets holds great potentials to complement existing traffic 

incident data in a very cheap way. A small sample of tweets acquired from the Twitter 

API cover most of the incidents reported in the existing data set, and additional incidents 

can be identified through analyzing tweets text. Twitter also provides ample additional 

information with a reasonable coverage on arterials. A tweet that is related to TI and 

geocodable accounts for approximately 10% of all the acquired tweets. Of those 

geocodable TI tweets, the majority are posted by influential users (IU), namely public 

Twitter accounts owned by public agencies and media, while a small number is 

contributed by individual users. There is more incident information provided by Twitter 

on weekends than on weekdays. Within the same day, both individuals and IUs tend to 

report incidents more frequently during the day time than at night, especially during 

traffic peak hours. Individual tweets are more likely to report incidents near the center of 

a city, and the volume of information significantly decays outwards from the center. 

 

We developed a prototype web application to allow users to extract both real-time and 

historical incident information and visualize it on the map. The web application will be 

tested in PennDOT transportation management centers.   
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1 Introduction 
 

For decades, research has been dedicated towards establishing traffic incident detection 

systems to identify the time, locations, and types of traffic incidents in real time. It would 

be ideal to have human beings to report all incidents manually since human beings can 

provide detailed and accurate information regarding incidents. However, due to high 

capital/labor cost and significant delay in human-based reports, algorithms have been 

developed to automatically detect incidents. Implicitly embedded in detection automation 

is the assumption that significant change in flow characteristics immediately follows the 

incidents. Through mining the real-time traffic data collected by scattered sensors in 

transportation networks, incidents and their features may be identified. Algorithmic 

incident detection is, however, still not cheap. Incidents may occur in any location and 

any time period, and thus to achieve reasonable coverage and accuracy, sensing traffic 

flow in a wide spectrum of time and space is necessary. More importantly, algorithmic 

incident detection tends to work well on highways, but not on local arterials. The traffic 

flow on arterials is largely affected by random factors, such as non-motorized traffic, 

signal lights, street parking, etc. Given the current sensing coverage, it is notoriously 

difficult to accurately detect arterial incidents. Crowdsourcing seems to be a solution to 

this matter for its low cost, real-time capacity and reasonable accuracy. 

Social media sites sharing short messages, such as Twitter, have become a powerful and 

inexpensive tool for extracting information of all kinds. It has a fairly large user pool, 

much more diverse than a specific incident crowdsourcing tool (such as Waze). Also, a 

significant portion of its data is shared by individuals to the public, which can be acquired 

using Application Program Interfaces (APIs). Twitter currently produces 340 million 

tweets per day from more than 140 million active users. Since transportation is part of 

everyone’s daily lives, many active users post messages when they encounter incidents, 

or shortly after. This huge resource may potentially gather a valuable body of information 

regarding incidents that differ significantly by type, location, and time. Social media sites 

may be an inexpensive alternative to privately-owned crowdsourcing tools (such as 

Waze).  

Nevertheless, social media data does not come without a price. The real-time detection of 

incidents based on Twitter is challenging. The state-of-the-art text mining techniques 

cannot be applied directly to mine tweets since the tweet language varies considerably 

from daily language. Twitter messages are short (140 characters at most) and can often 

contain typos, grammatical errors, and cryptic abbreviations. In 2009, a short-term study 

stated that 40% of the tweets are often considered as “pointless babble”, making it 

difficult to separate useful information from plain noise (Analytics, 2009).  

The aim of this research task is to bridge the gap between the massive potential 

information existing in the social media data (e.g. Twitter) and the need for accurate, 

inexpensive, and real-time traffic incident information. The reason of choosing Twitter as 

a representative of social media sites is as follows:  
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(1) we have access to a reasonably large Twitter database, CMU-Gardenhouse, 

available free of charge for research. A portion of Twitter data is accessible by 

developers in the real time through Twitter’s APIs, which allows us to develop real-

time incident detection tools based on Twitter;  

(2) Comparing to Facebook, a portion of Twitter data is accessible. However, 

Facebook data is proprietary;  

(3) Comparing to Google+, Twitter offers versatile APIs for crawling, searching, and 

mining the Twitter data. The APIs offered Google+ have very limited functionalities, 

and therefore Google+ may not be a good source for real-time incident detection. 

We intend to answer the following questions: 

(1) How frequently do Twitter users in selected region and corridor tweet about 

incidents? 

(2) What types of incidents do they tweet about? 

(3) Are there any locations about which people tweet more often? 

(4) What is the ratio of overall Twitter data in selected regions and corridors to data 

that is relevant to incidents? 

(5) Are there any particular times (of day/year) or conditions for which users tweet 

more about incidents? 

(6) Can social network analysis techniques identify key influencers who tweet about 

incidents? 

(7) How to identify in real time if a tweet is incident related? 

(8) How to classify events in all incidents related tweets in the real time? 

(9) How to infer the geo-location of the tweet and map it to the road network in the 

real time? 

(10) In real time, what percentage of incidents can be detected and what percentage of 

those can be precisely geo-coded? 

(11) How timely is the Twitter-based incident detector? 

(12) How to establish a score system to indicate confidence levels of valid incident 

detection? 

 

This report is organized as follows. We first discuss the basic assumptions of the domain 

model, the data structure of tweets, and the categorization of the incidents in Section 2, 

followed by descriptions of the data mining model used for incident detection in Section 

3. In Section 4, we propose and test the offline version of the Twitter-based incident 

detector, and aim to answer question (1)-(6). In Section 5, we extend the established 

offline version of Twitter-based incident detector to an online version, and aim to answer 

question (7)-(12). In Section 6, we explore the possibility of using the audio data from 

public radio stations as an alternative of acquiring traffic incident data. Finally in Section 

7, we introduce a Web-based interface for users to access the Twitter-based traffic 

incidents in real-time. 
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2 Traffic Incident Domain Model 

2.1 Incident categorization  

PennDOT Road Condition Reporting System (RCRS) is a statewide tool used by all 

Pennsylvania Department of Transportation engineering districts to ensure consistency 

and accuracy when reporting road closure and condition information on state highways. 

RCRS data set has categorized all incidents as follows, 

1 ACCIDENT 
2 DEBRIS ON ROADWAY 
3 WINTER WEATHER 
4 SPECIAL EVENT 
5 OTHER 

6 ROADWORK 
7 FLOODING 
8 BRIDGE OUTAGE 
9 DOWNED UTILITY 

10 DOWNED TREE 
11 BRIDGE PRECAUTION 
12 ACCIDENT (MULTI-VEHICLE) 
13 DISABLED VEHICLE 
14 SLOW VEHICLE 
15 VEHICLE FIRE 
16 POLICE ACTIVITY 

 

We categorize tweets-based incidents as follows, 

1. Accidents (categories 1, 12, 15 in RCRS) 

2. Roadwork: roadwork (categories 6, 8, 11 in RCRS) 

3. Hazards & Weather: debris, downed trees, downed utility, flooding, winter 

weather, extreme weather (categories 2, 3, 5, 7, 9, 10 in RCRS) 

4. Events: sports, ceremony, parade, etc. (category 4 in RCRS) 

5. Obstacle vehicles: slow vehicles, disabled vehicles, stuck trucks, construction 

vehicles, fire fighters, ambulances, police vehicles and activities (categories 13, 

14, 16 in RCRS) 

To assign an incident category to a tweet, two data filtering processes will be performed: 

(1) determine whether or not the tweet is traffic-related; (2) if a tweet is traffic-related, 

then which category it belongs to, or in what probability the tweet belongs to each of the 

five categories. 

To accomplish the first process, a dictionary (collection) of “keywords” to classify 

whether or not a tweet is traffic-related will be learned by checking the frequencies of 

each used word in all tweets and selecting the most relevant words. The selection process 
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is done using an Active Machine Learning method where the dictionary starts from a set 

of “seed keywords” and grows iteratively as we learn more tweets.  

In all 264 “seed keywords” have been selected as a first step to filter out non-traffic-

related tweets. Those “seed keywords” include, but are not limited to: 

['CR-,entrance', 'PennDOT', 'DOT', 'I-', 'PA-', 'SH-', 'SR-', 'US-', 'accident', 'accidents', 

'alert', 'alerts', 'ambulance', 'approach', 'approaching', 'ave', 'avenue', 'behavior', 'bicycle', 

'bicycles', 'bike', 'block', 'blvd', 'boulevard', 'break', 'brg', 'bridge', 'bridges', 'broken', 'bus', 

'bus w', 'car', 'caring', 'cars', 'caution', 'civilian', 'clear', 'cleared', 'close', 'closed', 'closing', 

'closure', 'coach', 'collide', 'collision', 'commute', 'complaint', 'congest', 'congestion', 

'connect', 'connects', 'construct', 'construction', 'crash', 'crash', 'crosswalk', 'crowded', 'curb', 

'cycle', 'cycler', 'damage', 'deadly', 'debris', 'delay', 'delayed', 'delays', 'directing traffic', 

'disabled vehicle', 'disruption', 'downhill', 'dr', 'drive', 'driver', 'drivers', 'e', 'e', 'east', 

'eastbound', 'eb', 'emergency', 'enter', 'enters', 'exit', 'exits', 'fallen tree', 'fast', 'fee', 'feet', 

'fine', 'flat', 'flooding', 'friction', 'ft', 'fuel', 'garage', 'hazard', 'headlight', 'highway', 'hill', 

'hour', 'hr', 'hwy', 'in', 'in front of', 'inch', 'inches', 'intersection', 'intersection', 'jam', 'jam', 

'jammed', 'junction', 'lake', 'lamp', 'lamps', 'lane', 'lanes', 'light', 'lights', 'limited', 'limited', 

'lk', 'ln', 'maintenance', 'marker', 'meter', 'meters', 'metro', 'mi', 'mile', 'mile post', 'miles', 

'motor', 'mountain', 'move', 'movement', 'mph', 'mt', 'multi vehicle', 'multiple', 'n', 'nb', 

'never', 'never move', 'north', 'northbound', 'obstacle', 'on fire', 'outbound', 'overnight', 

'park', 'parking lot', 'parking lots', 'passenger', 'passengers', 'pavement', 'peak', 'pedestrian', 

'pedestrians', 'period', 'periods', 'pkwy', 'pl', 'place', 'places', 'police', 'ponding', 'puncture', 

'rail', 'ramp', 'rate', 'rd', 'remains', 'remove', 'reopen', 'reopened', 'repair', 'report', 

'restriction', 'ride', 'river', 'rivers', 'road', 'road work', 'roads', 'roadway', 'roundabout', 'route', 

'routes', 'rte', 'rush', 'safe', 'safety', 'safety', 'sb', 'schedule', ‘Schuylkill’, 'seal', 'seat', 

'seatbelt', 'sedan', 'sedans', 'segment', 'segments', 'severe', 'severely', 'shocking', 'shoulder', 

'sidewalk', 'sign', 'signal', 'signals', 'signs', 'slip', 'slope', 'slow', 'south', 'southbound', 'speed', 

'speeding', 'speeds', 'st', 'station', 'stopped', 'stops', 'street', 'streets', 'stuck', 'stuck', 'suv', 

'suv', 'terrible', 'ticket', 'tire', 'toll', 'tow', 'towed away', 'tpk', 'traffic', 'train', 'transits', 

'transportation', 'truck', 'trucks', 'tunnel', 'tunnels', 'turnpike', 'uphill', 'van', 'vans', 'vehicle', 

'vehicles', 'victim', ‘victims’, 'way', 'wb', 'weather', 'weight', 'weights', 'west', 'westbound', 

'working zone', 'wreckage', 'wt', 'zone', 'zones'] 

Notice that “seed keywords” is to be expanded to the final dictionary of “keywords” as 

more tweets get extracted and labeled.  

For the second process, given a tweet is identified as traffic-related, we adopt a similar 

methodology as the first process to further assign its categories. For each category, the 

“seed unique keywords” (listed below) include, but are not limited to,  

Incident Type Seed Unique 

Keywords 

Accidents Crash 

Accident 
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Collision 

Fatal 

Tow 

Break 

Damage 

Repair 

 

Road closure Road work 

Closure 

Zone 

Maintenance 

Schedule 

Seal 

 

Hazards & weather Rain 

Snow 

Slip 

Wind 

Flood 

Rainy 

Snowy 

Hazard 

Tree 

Block 

Wiper 

Inches 

Wet 

Cold 

Freeze 

Hot 

Visibility 

Fire 

Weather 

Animal 

Deer 

Dead 

Hail 

Melt 

Ice 

Slope 

Chilly 

Slick 

Tire 

Cover 

Friction 

Frozen 
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Grip 

Cloudy 

Freeze 

Ponding 

 

Events Event 

Marathon 

Crime 

Riot 

Eagles 

NFL 

Football 

Flyers 

Hockey 

NHL 

Phillies 

Baseball 

76ers 

Basketball 

Fans 

Soccer 

Race 

Ironman 

University 

Concert 

Demonstration 

Gang 

Holiday 

Exhibition 

Conference 

Obstacle 

Vehicles 

Debris 

Obstacle 

Disabled 

Overweight 

Tall 

Height 

Heavy 

Stuck 

 

2.2 Case study location 

PennDOT and CMU have agreed to use Philadelphia County as the location for the case 

study. The boundary of the Philadelphia County is shown as Figure 1. 
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Figure 1. Case study: Philadelphia County (the screenshot was taken from Google 

Map) 

2.3 Twitter data structure 

The domain model includes the database design, flow chart for the data analytics, a brief 

description of each module and software engineering design of the deliverable tool.  

2.3.1 Database design 

We use the CMU Gardenhouse Twitter data as the historical data set to establish models. 

The CMU Gardenhouse Twitter data is in raw JSON (JavaScript Object Notation) file. To 

utilize the highly structured raw JSON file in a more efficient way, the first step is to 

build a database that could perform efficient query. In this project, a new database called 

MongoDB is used instead of traditional Relational Databases (RD). The advantages of 

using MongoDB over RD for this application are as follows: 

(1) The schemaless nature of MongoDB allows quick and easy development and any 

modification could be directly made on the structure of entries; 
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(2) Naturally support dictionary-like data structures like JSON, which is exactly the 

data format in the CMU Gardenhouse data; 

(3) Rich queries: query on text is not as easy as query on traditional databases, and 

MongoDB enables a document-based query language that could enforce a rich 

query procedure; 

(4) Supports Big Data: MongoDB is designed to scale for large database applications 

and natively support Hadoop Map-Reduce, a common big-data machine learning 

routine. 

The object-oriented concepts of the tweets and twitter users in this project is shown in 

Figure 2. 

 
Figure 2. Tweets and Twitter user data structure 

 

The expected output of this project is specified in Figure 3.  
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Figure 3. Back-end Incident output – database 

Each variable is defined as follows, 

 ‘timestamp’, ‘geoX’, and ‘geoY’ – the time and location of the incident;  

 ‘isIncident’ – whether or not the tweet is a traffic-related tweet; 

 ‘probIncident’ – the probability of the tweet being a traffic-related tweet (namely 

a confidence score); 

 ‘probAccident’ – the probability of the tweet being under the category of an 

accident; 

 ‘probRoadwork’ – the probability of the tweet being under the category of a 

roadwork; 

 ‘probHazWeather’ – the probability of the tweet being under the category of 

hazard & weather; 

 ‘probEvent’ – the probability of the tweet being under the category of an event; 

 ‘probObsVehicles’ – the probability score of the tweet being under the category 

of obstacle vehicle 

 

2.3.2 Software engineering design  

The final deliverable of this project is a prototype map-based website and incident 

database that acquire tweets and display incidents in the real time. The software design of 

this prototype system, all the objects of the software with their relations, is described in 

11. Appendix: the diagram of software engineering design.  
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Under the control of SuperController, the whole Twitter data processing module has three 

parts: (1) AdaptiveController; (2) Classifier; (3) GeocodingController. 

The entire process of adaptive data acquisition is under AdaptiveControler, which firstly 

crawls an initial batch of tweets using initial queries. The acquired tweets are then 

processed by the module called LabelAndMapReduce, which assists users to manually 

label the tweets by whether or not it is traffic-related, and utilizes a map-reduce 

procedure to generate “important words” which are highly related with traffic. These 

“important words” are then added into a “traffic incident dictionary” and new queries is 

assembled from that dictionary to crawl another batch of tweets. This iterative process 

continues until a convergence criterion is met. 

After acquiring all the tweets with the finalized “traffic incident dictionary”, a classifier is 

development and used to determine: (1) whether or not the tweet is traffic-related; (2) 

what category the tweets belongs to and with what probability. Two possible methods of 

the classification are Support Vector Machine (SVM) and Naïve Bayes. 

To further extract locational information from tweets, we will develop 

GeocodingController that consists of two parts: Geoparser and Geocoder. Geoparser is to 

transform the locational information in non-homogeneous tweets into a standard form 

and the Geocoder is to use the standard form of locational information to perform the 

geo-coding process in order to obtain the precise longitude and latitude of an incident. 

3 The Model for Incident Detection Based on Tweets 
 

To train a reliable model to identify incidents, we adopt CMU Gardenhouse database as 

our data pool. CMU Gardenhouse database was built and has gathered Twitter data from 

September 2009 to August 2014 at the Machine Learning Department CMU. Since 

September 2010, the database contains about 10% of the entire Twitter public messages. 

The data is stored in internal CMU servers and is accessible via secured HTTP requests. 

For each day, there are roughly 1 million messages, and around 80% of them are actually 

tweets (others are non-message events like deletion events). The full database contains 

about 2170 million tweets and the sizes of the unzipped tweets exceeds 1 terabyte (TB). 

Thanks to a special agreement shared by Twitter and CMU, the amount of this data (10% 

of Twitter messages) is massive comparing to the fact that the best of portion of Twitter 

data could be acquired via public Application Program Interfaces (APIs) is Twitter 

STREAM API, which contains at most 1% of all Twitter public messages.  

Following the domain model designed in Section 2, a MongoDB document-oriented 

database is built to store the 1TB CMU-Gardenhouse historical Twitter data. The main 

reason of using MongoDB is that it is able to handle the parallel computing of massive 

amount of data. To better describe the methodologies, we define terms as follows: 

 TI tweets: tweets that are related to a traffic incident 



11 

 

 NTI tweets: tweets that are not related to a traffic incident 

 Geo tweets: tweets that contain geo-location information (either geo-tagged or 

have texts indicating geo-locations) and can be geocoded 

 

As shown in Figure 4, the model training is in the following steps: 

(1) Initial crawling: crawl the initial batch of tweets from CMU Gargenhouse 

historical Twitter database; 

(2) Adaptive data acquisition: this procedure employs the principle of Active 

Learning, to recursively crawl tweets using the newly assembled queries by 

investigating the previously crawled tweets. The goal of the adaptive data 

acquisition module is to maximize the amount of crawled traffic-related tweets for 

further classification. This step is further described in the following subsection. 

(3) Feature extraction: the goal of this module is to map the crawled traffic-related 

tweets into a proper space where further classification could be performed. A 

preliminary feature space is the space of all the words in the traffic-related 

dictionary identified in step 2; 

(4) TI/NTI tweets classification: given an acquired tweet, the goal of the TI/NTI 

classification module is to determine whether or not the tweet is related to traffic 

incidents; 

(5) Categorical classification: given a TI tweet, the goal of categorical classification 

is to determine what category (accidents, road work, hazards & weather, events, 

obstacle vehicles) the tweets belong to; 

(6) Geo-coding: extract the geo-locational information of a tweet. 
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Figure 4. Twitter textual mining flowchart 

 

3.1 Adaptive data acquisition 

The objective of adaptive data filtering is to acquire as many TI tweets as possible from 

the CMU-Gardenhouse database with a reasonable computational efficiency. For each 

iteration, there are two parts of filtering: (1) Keywords matching for Twitter texts; (2) 

Keywords matching for user descriptions. 

The entire process of iterations is shown in Figure 5. First, we assume the Twitter Text 

Dictionary has the words {A,B,C}, and User Description Dictionary has words {D,E,F}, 

then the query, in pseudo code, is: 

For tweet in the data pool: 

 If (tweet.text HAS (A OR B OR C)) OR (tweet.usrName.description HAS (D OR E OR  F)): 

  Include tweet in the query results 

The morphological affixes of words are removed from all texts in the query process using 

Natural Language Tool Kit (NLTK), and also, only English tweets are processed. 
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Figure 5. Adaptive data filtering flow chart 

 

Another noteworthy point is that, instead of querying on Influential Users (IUs) directly, 

we query on users’ descriptions. The benefit of this method is to discover new IUs all 

over the Twitter population without manually browsing for them. Additionally, the 

results of discovered IUs can be used for queries. 

It typically takes several days of processing time to query data from the entire database. 

We implemented 4 batches of this data acquisition, with 1,093,631 tweets acquired and 

19,411 tweets labeled. This results in the expansion of original Twitter Text Dictionary 

into 203 words. 

3.2 Feature extraction and TI/NTI classification 

In this project, the commonly used “bag of words” model is applied, meaning only the 

count of the occurrence of words in Twitter Text Dictionary is used as features, 

regardless of the order. For example, tweet: 

Multi vehicle accident on I-95 southbound at Exit 30 - Cottman Ave/Rhawn St. There is a 

lane restriction. 

 

The corresponding features are: 

vehicle 1 

accident 1 

#road-name# 3 

southbound 1 

exit  1 

lane 1 
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Also notice that specific road names like “I-95”, “Cottman Ave”, and “Rhawn St.” are 

generalized as “#road-name#” because we assume the occurrence of any road name 

contributes equally to the probability of an TI tweets. This also largely reduces the 

dimensions of Twitter Text Dictionary. 

The model we used for TI/NTI classification is “Semi-Naïve-Bayes”. The intention of 

using a Semi-Naive-Bayes is to take into account those correlated features whereas still 

holding a part of the "naive" assumption to avoid computation in high dimensions. The 

Semi-Naive-Bayes classification model differs from the Naive Bayes model by 

consolidating those correlated features, 

 

where Y=1 indicates a tweet is related to traffic incidents and Y=0 otherwise. All features 

X are ordered by those correlated feature tuples first, followed by independent features. 𝜎 

is the set of the positions in the order for the first and last feature in a correlated tuple, 

and the features with the position from J to I are all independent features. Fortunately, 

features have been selected in the adaptive data acquisition process with the consideration 

of word combinations. Note that those single words and word combinations with the 

highest frequencies are selected as part of the dictionary. Therefore, we can directly apply 

those words and combinations to form a feature space for the Semi-Naive-Bayes 

classification by assuming that each of those single words and word combinations can 

occur in TI tweets independently. 

In the Semi-Bayes-Classifier, each probability term can be computed by, 

 

where the notation #{A} means the number of label/word {A} in the pool of all acquired 

tweets. Given a feature vector X of a tweet, we classify this tweet by, 

 

where Y= 1 indicates this tweet is a TI tweet, and 0 otherwise. 

For example, a tweet reads "Pkwy W delays begin before the top inbound, very slow 

outbound from Green Tree to work zone.", where we suppose the feature space is defined 

by ("pkwy","delay", "work zone", "crash"), then this tweet’s coordinate in this feature 

space is (1,1,1,0). The posterior probability of Y is given by 

 

restriction 1 
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3.3 Categorical classification 

The objective of this section is to develop a categorical classifier that can estimate the 

probability of a tweet belonging to each category given it is related to traffic incidents. 

First, as noted in Section 2, we define five categories of incidents: 

0 => NTI 

1 => Accidents 

2 => Road work  

3 => Hazards & Weather 

4 => Events 

5 => Obstacle Vehicles  

In this research, we use the state-of-art Supervised Latent Dirichlet allocation (sLDA), a 

generative probabilistic model for collections of discrete data such as text corpora, as our 

classifier. The reasons of using sLDA are as follows: (1) sLDA is a classical topic model, 

which is widely used over the years in the domain of Natural Language Processing; (2) it 

has relatively fast training and prediction runtime; (3) it is able to tell not only the 

categorical label but also the probability of that label; (4) it is a three-level hierarchical 

Bayesian model, making the model easy to interpret (comparing to Neural Network or 

Support Vector Machine). Details of the sLDA model are described in the Appendix. 

Also notice that the output of the sLDA is a vector of probability of the tweet belonging 

to each category. The category with highest probability is chosen. Some examples of 

tweets are: 

Kwinana Fwy southbound at Paganoni Rd, Karnup - RIGHT LANE BLOCKED – crash 

Labeled: {1} 

Classified: {1=>84% Others=>16%} 

CLEARED: Vehicle fire on US 422 eastbound at PA 23. 
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Labeled: {5} 

Classified: {4=>89% Others=>11%} 

 

New Fire reported on 91 at Raymond in Anaheim. Both sides of 91 being affected. Take 

Orangethorpe East\/West as ATL. @KNX1070 traffic guy. 

Labeled: {4} 

Classified: {4=>78% Others=>22%} 

 

 

3.4 Geocoding 

After the classification, we have identified all TI tweets in the acquired pool. Next we 

will extract their location information and geocode them in GIS.  

The geographic location information carried by tweets is rich but very noisy. There are 

generally three types of location information. (1) A tiny portion of tweets carry 

latitude/longitude coordinates, and they are usually tweeted from geo-tagging enabled 

smart phones; (2) Some tweets are posted by accounts whose profiles are shared with the 

public, such as city, country, and sometimes finer-grained business names and street 

addresses of the business. Unfortunately, this type of location information generally does 

not imply incident locations; (3) Road names and points of interest may be referred in 

tweet texts. The main objective of our geocoding algorithm is to extract location 

information from the third type, namely tweet texts, and map each TI tweet to the GIS if 

possible. 

The general idea is to first identify those words representing road names and/or point-of-

interest (POI) names, followed by a geocoder that translates those names to 

latitude/longitude coordinates of the incident. Some tweets, especially those tweeted by 

IUs, report incidents with highway exit numbers or mile markers. In that case, we build a 

GIS to geocode the exit numbers or mile markers into latitude/longitude coordinates. The 

process of geocoding tweet texts is conceptually depicted in Figure 6. 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Figure 6. Flow chart of tweets geocoding 

 

A geo-parser is a machine that receives input of a string and produces a structured and 

segmented strings that contain only geographical information. As shown in Figure 6, we 

use two geo-parsers. The first one (named P1 in Figure 6) is to carefully implement a 

large set of Regular Expressions (REs) to extract road names, intersection names, 

highway exit numbers, and highway mile markers. When the REs set is sufficiently large 

to cover all roads in a region, its geo-parser can work well to extract geographical 

information. However, it cannot process the names of point of interests commonly 

referred to in tweets, such as "Hamburg Hall" (a landmark building in Pittsburgh) and 

"Squirrel Hill" (a local neighborhood in Pittsburgh). Whenever P1 does not work, the 

secondary geo-parser (named P2 in Figure 6) developed by (Gelernter and Balaji 2013) 

is adopted, where a fuzzy language matching algorithm is implemented to parse those 

words relevant to locations. Those fuzzy words are specified in a pre-defined dictionary. 

Comparing to P1, P2 can process point of interests but not road names and numbers. The 

strategy is to apply P1 to a tweet, and whenever P1 fails, P2 is used instead. 

P1 geo-parses a tweet following the structure shown in Table 1 where it identifies either 

a segment of highway with starting and ending mile marker specified, a specified road, or 

intersections of up to three roads/highways. 375 For instance, a tweet reads "Accident on 

I-376 westbound between Mile Post: 61.0 and Mile Post: 60.0. There is a lane 

restriction." using P1, the parsing result is shown in Table 2. 
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Table 1. The data structure of RE-based geo-parser 

 

Table 2. An example of geo-parsing result 

The output of geo-parsers is then translated to latitude/longitude by geocoders. If a tweet 

is processed by the fuzzy geo-parser (namely P2), the output words are fed into a 

Gazetteer (named G3 in Figure 6) to identify the location. For the tweets processed by 

the RE geo-parser (namely P1), there are two possible geocoders. If a tweet has road 

names or intersection names without specifying highway mile markers (e.g., an arterial 

road), then the ArcGIS geocoder (named G1 in Figure 6) is used to generate latitude and 

longitude coordinates. However, a major drawback of G1 is that it cannot geocode those 

mile- markers or exit numbers of highways. If that is the case, a highway geocoder 

(named G2 in Figure 6) should be built. For the case study in this paper, we collect the 

GIS of all highways in Pennsylvania, and map the mileage of each of all highway 

junctions to a pair of latitude and longitude. G2 has some limitations and can be enhanced 

in the future research. It currently cannot compile vague relational words such as "to the 

north of" or "near". It does not correct misspelled road/highway names. 
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4 Macro Analysis of Historical Social Media Dataset 

4.1 Case I: Sep. 2014, Pittsburgh and Philadelphia 

In the month of September, 2014, there are in all 3776 TI tweets acquired for Pittsburgh 

area and 4571 TI tweets acquired for Philadelphia area using the Twitter REST API and 

adaptive data acquisition described above. Notice that the dictionary and the IUs are 

trained by data acquired from REST API, instead of the full CMU-Gardenhouse database. 

Case I tests how effective our algorithms are when using REST API data to train our 

model. 

A summary of the data acquisition and geocoding results is shown in Table 3. For 

Pittsburgh, among 10542 tweets, with 3776 TI tweets acquired, only 554 tweets can 

imply meaningful traffic incidents with accurate time and location. This shows the power 

of massive data mining on big data. Another noteworthy point is that, although IUs’ 

tweets consists only 5.9% of all acquired TI tweets in Pittsburgh, they contribute to 69.8% 

of final Geo-TI tweets. The reason of this phenomenon is that IUs’ tweets tend to report 

traffic incidents with detailed location and clear linguistic structure, which makes the 

accurate geocoding possible. For example, a typical IUs’ tweet is "Turnpike Roadwork 

on Pennsylvania Turnpike I-476 northbound between Exit 31 - PA 63 and Exit 44 - PA 

663 420 affecting the right lane", where there is an explicit locational information 

contains in the tweet. For comparison, a typical individual user’s tweet is "“@TMZ: Dog 

The Bounty Hunter – Daughter & Grandkids In Serious Car Crash http://dlvr.it/6tpycK ” 

@DogBountyHunter @MrsdogC all our prayers", with a picture of the accident. From 

the vague description in the tweet, it is hard to extract locational information of this 

traffic accident.  

 Pittsburgh Philadelphia 

All tweets acquired 10542 11658 

TI tweets 3776 4571 

IUs’ tweets 621 554 

IUs’ TI tweets 595 518 

Geo-TI-tweets 554 419 

IUs’ Geo-TI tweets 381 244 

IUs’ portion in TI tweets 15.8% 11.3% 

IUs’ portion in Geo-TI tweets 69.8% 58.2% 

RCRS incidents 217 105 

 

Table 3. Data summary: Case I 

After adaptive data acquisition and geocoding, there are 554 Geo-TI tweets left for 

Pittsburgh and 419 for Philadelphia in September. Each of these Geo-TI tweets can be 

assumed to describe a traffic incident reported by Twitter. On the other hand, the RCRS 

reported 217 incidents in Pittsburgh and 105 in Philadelphia. The scatter plots of monthly 

Twitter and RCRS incidents are shown in Figure 7a and Figure 7b, where the red dots 

are incidents reported by Twitter and the blue dots are those reported by RCRS. It can be 
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seen that there are more red dots (Twitter incidents) than blue dots (RCRS incidents), 

especially on local arterials. A closer look at those locations implies that many of those 

incidents reported by Twitter occurred on local roads that are owned by local jurisdiction. 

The additional incident information can complement the RCRS incidents on state-owned 

roads.  

 

 
Figure 7. RCRS and Twitter incidents in Pittsburgh and Philadelphia, Sep 2014 

 

Figure 8 illustrates the difference in terms of temporal distribution between RCRS and 

Twitter Incidents in the city of Pittsburgh. As can be seen in Figure 8a, the RCRS 

incidents from the first to the last hour of a day is almost evenly distributed. When 

comparing Figure 8a with Figure 8b, it can be observed that the temporal distribution of 

influential users’ tweets are extremely similar with the distribution of RCRS incidents 

though out a day. An explanation is that, the "sources" of RCRS and influential user 

tweets are quite similar, which are mostly governmental agencies. However, the 

distribution of individual user tweets is totally different: the individual user tweets are 

concentrated during the day time and morning/afternoon peak hours. It can be concluded 

Twitter contains more authority-reported incidents than RCRS, and it have better 

coverage during morning/afternoon peak hours, but not off-peak. For Philadelphia, the 

pattern is very similar. 
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Figure 8. Temporal profiles of incidents reported by RCRS and Twitter in 

Pittsburgh 

 

Figure 9 shows the spatial distribution of incidents reported by RCRSand Twitter for the 

greater Pittsburgh area. Each bar in the histogram in Figure 9 shows the number of 

incidents falling in the rings of distance to the center of the city, which is chosen 

according to Google Maps: (40.440731, -79.995751). It can be seen from Figure 9 that 

the spatial distribution of RCRS incidents is quite even in the metropolitan area, whereas 

the Twitter incidents lies more in the center of the city than the suburb area of the city. 

Another observation is that, in Figure 9, the individual user tweets tend to concentrate in 

the center of the city while influential user tweets tend to be evenly distributed, just as the 

RCRS data. Therefore, it can be concluded that comparing to RCRS, Twitter incidents 

tend to have a better coverage on incidents near the center of the city. For the case of 

Philadelphia, the conclusion remains exactly the same. 
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Figure 9. Spatial distribution of incidents reported by RCRS and Twitter in 

Pittsburgh 

 

4.2 Case II: Aug. 2015, Philadelphia 

In this case, we conduct the data acquisition using the Twitter REST API and STREAM 

API, using the trained Twitter Text Dictionary (203 words) and Twitter IUs from CMU 

Gardenhouse database. In particular, the Classifiers are also trained from the full database 

of CMU Gardenhouse and the refined Geo-coder are trained from the Open Street Map 

Points of Interest (POI), Roads, and Areas shapefiles, as well as the Tiger shape files. For 

those Geo-TI tweets, we also labeled the categories. A summary of the data acquired is 

shown in Table 4.  
 

All tweets acquired 28115 

TI tweets 3072 

IUs’ tweets 2634 

IUs’ TI tweets 1752 

Geo-TI-tweets 1390 

IUs’ Geo-TI tweets 1229 

IUs’ portion in TI tweets 57.0% 

IUs’ portion in Geo-TI tweets 88.4% 

RCRS incidents 135 

 

Table 4. Data summary: Case II 

The first noteworthy point is that, there is indeed a large amount of traffic incident 

information in Twitter, where on average, every 1.5 minutes there is a tweet that could 

potentially contain incident related information in the Philadelphia area. Additionally, it 

can be seen that IUs play a very crucial rule in the Geo-TI tweets (88.4%) acquired. 

Comparing to Case I, training models based on the CMU Gardenhouse database allow us 

established more IUs that report useful incident information.  As of the performance of 

TI/NTI classifier, the success rate is 92.6%. For the overall performance of TI/NTI 
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classifier and the sLDA categorical classifier combined, the success rate is 69.2%, 

meaning the percentage of the actual TI tweets labeled as the correct category is 69.2%. 

 
Figure 10. Incidents reported by RCRS and Twitter in Philadelphia, Aug 2015 

 

Figure 10 shows the spatial distribution of incidents reported by Twitter and RCRS: the 

red dots are Twitter incidents and blue dots are RCRS incident. Clearly, there are much 

more traffic incidents acquired by Twitter than reported by RCRS. A quantitative 

analysis is also shown in Figure 11. It can be seen that for the city of Philadelphia, RCRS 

incident tend to concentrate within the 10-mile radius from the city center. However, the 

number of incidents reported by Twitter is much greater than RCRS, and linearly 

decreases with respect to the distance from the city center.  

Similar to Case I, it is found that many of incidents reported by Twitter occurred on local 

roads that are owned by local jurisdiction. The additional incident information can 

complement the RCRS incidents that occurred on state-owned roads. With more incident 

alerts on local roads, it may help Transportation Management Centers to coordinate 

between the City and PennDOT for efficient traffic management.  
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(a) Spatial distribution of incidents 

reported by RCRS 

(b) Spatial distribution of incidents 

reported by Twitter 

Figure 11. Spatial distribution of traffic incidents 

The temporal distribution of RCRS and Twitter reported incidents is shown in Figure 12. 

Similar to the conclusion drawn from Case I, RCRS incidents tend to distribute uniformly 

over the time of day, whereas Twitter has a better coverage during the daytime, especially 

the two peak periods. 

  
(a) Temporal distribution of 

incidents reported by RCRS 

(b) Temporal distribution of 

incidents reported by Twitter 

Figure 12. Temporal distribution of traffic incidents 
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(a) RCRS incident categories (b) Twitter incident categories 

Figure 13. Incident categories of Aug. 2015 traffic incidents 

Figure 13 shows the composition of incident categories between RCRS and Twitter 

incidents. Twitter tends to report slightly more accidents and road work than RCRS. 

Moreover, the least portions of incidents in RCRS are obstacle/disabled vehicle, police 

activity, and fire in RCRS (in all 10%), which correspond to the category of events and 

obstacle vehicle in Twitter (in all 16%).  

5 Real-time Micro Analysis of Social Media Dataset 

5.1 The pipeline framework 

In Section 3, we have already trained a series of models, namely a Semi-Naïve-Bayes 

(SNB) Classifier to determine whether or not a tweet is related to a traffic incident (TI 

tweet), a Supervised Latent Dirichlet Allocation Model to determine which category a 

traffic incident belongs to, and a geocoder which extracts the locational information 

indicated by a tweet. To extend the models trained using historical data in Section 4 to a 

real-time model, we applied a series of real-time algorithms and connect them using the 

Unix Pipeline technique. 

Unix Pipeline is a series of processes chained by standard streams. Due to the need of the 

real-time data processing, the streaming type of data structure is suitable to generate final 

results one by one in stream similar to a production line. The code block looks like the 

below. 

 

The crawling.py module initiates streams and queries on keywords and Influential Users 

(IUs) every a few minutes and returns the streaming output to the Real-time Feature 

Extractor module. Similarly, the output stream of the feature extractor is the input stream 
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of the Semi-Naïve-Bayes classifier. The major difference between stream-type of process 

and traditional batch-type of process is that the downstream module does not need to wait 

for the upstream module to finish all the jobs before it can start working. The streaming 

technique enables modules to run almost simultaneously on different CPU cores, which 

could improve the timeliness of the Twitter-based incident detector. 

Based on the pipeline framework, the entire real-time models can be shown in Figure 14.  

 
Figure 14. Structure of the real-time Twitter-based incident detector 

 

It can be seen that the real-time version of the Twitter-based incident detector is very 

similar to the offline version introduced in Section 3, except the fact that the models 

trained by historical data are implemented and updated in real-time. 

5.2 From historical data to a real-time classifier 

We follow the framework shown in Figure 15 to learn the information contained in 

historical data and apply the algorithms in real-time. Specifically, we used the well-

trained and tested model parameter in the stage of offline training and apply these 

parameters directly into online training. Therefore, since there is no training stage in the 

online training, the processing speed in the online classification and geocoding will be 

extremely fast. 
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Figure 15. Apply models trained by historical data in the real time 

 

5.3 Test on a week-long data in Philadelphia 

The objective of this section is to: (1) test the performance of our real-time Twitter-based 

incident detector in terms of accuracy and timeliness; (2) further validate whether or not 

the tweets actually reports traffic incidents using INRIX travel time data and statistical 

hypothesis test. 

We continuously ran the real-time pipeline framework described above for one week 

(Dec 1 22:00pm – Dec 7 22:00pm). In Section 4, we use the Semi-Naïve Bayes classifier, 

the Supervised Latent Dirichlet Allocation classifier, and the geocoders trained by 

historical data. The Twitter crawling techniques including all IUs and keywords are the 

same as what was used in Section 4. However, in the real time processing, the tweets are 

classified and geocoded as soon as they are crawled (acquired) using the Unix pipeline 

technique, one distinction from historical data processing in Section 4. In addition, the 

final result of Section 4 was compared to historical RCRS data, whereas the final result 

of this section is now compared to the real-time INRIX travel time data. 

Instead of using RCRS incident data as the reference, we use INRIX travel time data to 

validate the results of Twitter-based incident detector. The reason is that RCRS does not 

necessarily cover all incidents on the state-owned roads. For those incidents that are not 

reported by RCRS, we do not have the ground truth. While INRIX travel time data 

measure the traffic speed on the 5 min basis for years along, it may be used to infer the 

occurrence of an incident in some cases. In addition, when processing those acquired 

tweets, we intentionally excluded the tweets acquired from those official PennDOT 

accounts (namely, @511PAPhilly, @PennDOTNews). The reason is that we would like 

to explore the “extra” information that can be provided to PennDOT apart from what 

PennDOT has already known. 
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We obtained 190 incidents reported by Twitter from December 1, 2015 to December 7, 

2015 that are additional to what PennDOT had known. The details about the data 

acquired are shown in Table 5. 

 Statistics 

Tweets acquired (excluding PennDOT tweets) 2709 

TI tweets 1178 

IU’s TI tweets 132 

Geo-TI-tweets 190 

IU’s Geo-TI-tweets 124 

IU’s portion of Geo-TI tweets 65.3% 

Table 5. Results for the week-long real-time experiment 

According to Table 5, about 43% of our acquired tweets are relevant to incidents. Note 

that this does not mean 43% of all the tweets contain incident information, because we 

have used the specially trained keywords and influential users to crawl data. In the real 

world, the percentage of tweets that report incidents is very small. In addition, 16% of the 

TI tweets can be geocoded.  

 

To establish a filter system for the incident detector, we use the probabilities as scores. 

For the TI/NTI classification, the score is the probability P(Y|X) generated by the Semi-

Naïve-Bayes classifier. Y is the indicator of the whether or not a tweet is a TI tweet, and 

X is the tweet text. Therefore, P(Y=1|X) means the probability of the given tweet X being 

a TI tweet, and P(Y=0|X) is the probability of the given tweet X being an NTI tweet. 

Notice that P(Y=1|X)+ P(Y=0|X)=1. We define: 

{
P(Y = 1|X) > P(Y = 0|X)                         𝑋 𝑖𝑠 𝑇𝐼 𝑡𝑤𝑒𝑒𝑡
P(Y = 0|X) > P(Y = 1|X)                 𝑋 𝑖𝑠 𝑛𝑜𝑡 𝑇𝐼 𝑡𝑤𝑒𝑒𝑡

                   

The formula above means that if the probability of a tweet being a TI tweet is greater 

than its probability of being a NTI tweet, then we say the tweet is classified as a TI tweet. 

P(Y=1|X) is precisely the confidence level of an incident detection given a tweet X. A 

histogram of P(Y=1|X) of the 190 Geo-TI tweet detected is shown in Figure 16. It can be 

seen that the majority of the probability scores lie between 0.7 and 0.9. 
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Figure 16. Histogram of P(Y=1|X) 

 

Additionally, we analyzed the timeliness of the entire real-time algorithms. As shown in 

Figure 17, the total computation time (T) needed from the actual occurrence of an 

incident to the incident displayed on the web is composed of the following seven times 

indicated in Figure 17. 

T=T1+T2+T3+T4+T5+T6+T7 

 
Figure 17. The timeline of an incident being reported by Twitter 

 

Among those time intervals, T1, T2 and T3 are irrelevant to our system. We did some 

experiments for T5 through T7.  T5+T6+T7 is usually less than 5 seconds. The 

breakdown for T4, T5, T6, and T7 is recorded by our program precisely (Table 6). 

Time period  Average time for one tweet 

T4 It is bounded by crawling frequency (300 

seconds on current setting, or user defined 

crawling frequency) 

T5 3.1ms 
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T6 87ms 

T7 0.9ms 

Table 6. Breakdown of computation time 

It can be concluded that T5, T6, and T7 are almost negligible comparing to T4. The 

crawling frequency, set to 300 seconds by default, dominates the time from a TI tweet is 

posted to the corresponding incident is shown in the web application. 

5.3.1 Validation using INRIX travel time data 

INRIX travel time data is provided by RITIS and could be downloaded by registered 

users in the Vehicle Probe Project Suite. It is a data set containing the travel speed, travel 

time data on major roads in the City of Philadelphia with certain confidence levels. The 

primary assumption of our analysis is that, “if there is a traffic incident on a road, the 

travel time will substantially vary from the typical mean travel time, and vice versa”. By 

comparing the travel time near the location of the incident with the historical travel time 

at the same location and same time-of-day, we are able to identify whether or not the 

travel time increase is statistically significant and thus infer whether there is an incident. 

In this section, we use statistical hypothesis test on: (1) each incident that are reported by 

Twitter; and (2) all incidents reported by Twitter together.  

5.3.1.1 Hypothesis test on the entire set of incidents 

Suppose the measured travel time of the road segments that are close to the occurrence 

time and location of the i-th traffic incident is 𝑇𝑖. In particular, we define 𝑇𝑖 as the 

average travel time from half an hour before the incident occurrence and half an hour 

after. Also, we retrieve all the travel times at the same location, the same time of day, and 

the same day of week over the previous eight weeks as 𝑯𝒊, which is a vector of eight 

elements (namely real numbers). Notice that 𝑯𝒊 is also one-hour average travel time. We 

standardize the travel time by: 

𝑇′𝑖 =
𝑇𝑖 − 𝐸(𝑯𝒊)

𝑆𝑡𝑑(𝑯𝒊)
 

and  

𝑯′𝒊 =
𝐻𝑖 − 𝐸(𝑯𝒊)

𝑆𝑡𝑑(𝑯𝒊)
 

Notice that 𝑯′𝒊 is also a vector consisting historical travel times in the previous eight 

weeks, and 𝐸() is the operator of expectation and 𝑆𝑡𝑑() is the operator of standard 

deviation. Theoretically, the distribution of 𝑯′𝒊 for all Twitter incidents shows the 

“typical travel time”. Comparatively, the distribution of 𝑇𝑖 implies the “actual travel time” 

at the time and location that the i-th incident occurs. By comparing the distribution of 𝑇′𝑖 

and 𝑯′𝒊, we are able to show how statistically different between the typical travel time 

and actual travel time. The result is shown in Figure 18. 
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Figure 18. Comparison on typical travel time and actual travel time 

 

 

In Figure 18, it can be clearly seen that the distribution of the actual travel time at the 

time and location where Twitter reports an incident is significantly different from the 

distribution of the typical travel time at the same time and location. Moreover, we 

performed a Kolmogorov–Smirnov (K-S) hypothesis test under the null assumption that 

“Typical travel time and actual travel time have the same distribution”.  

The P-value of this K-S test is 1.3277e-26, which is significantly smaller than normal 

significance level 0.01, meaning we should reject the null hypothesis. Therefore, we can 

conclude that “there is significant evidence for two random variables: typical travel time, 

and actual travel time when Twitter indicates an incident, follow two different 

distributions”. The actual travel time is significantly higher than the typical travel time, 

which validates that those Twitter-reported incidents are likely to be true. 

5.3.1.2 Hypothesis test on individual incidents 

The K-S hypothesis test above gives the overall validation that the generally Twitter-

reported incidents are truly traffic incidents. For each individual Twitter-reported incident, 

we perform a specific hypothesis test with the null hypothesis “Typical travel time and 

actual travel time where Twitter reports an incident follow the same Gaussian 

distribution”. The test in general is a Z-test. If the test statistic shows that we reject the 

null hypothesis, we can conclude that “there is significant evidence to show that when 

Twitter reports an incident, the traffic is likely to be abnormal due to the incident. To 
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perform this Z-test, we prepare the data in the following way. First, similar to Section 

3.2.1, we compute 

𝑇′𝑖 =
𝑇𝑖 − 𝐸(𝑯𝒊)

𝑆𝑡𝑑(𝑯𝒊)
 

and  

𝑯′𝒊 =
𝐻𝑖 − 𝐸(𝑯𝒊)

𝑆𝑡𝑑(𝑯𝒊)
 

Notice that in this test, 𝑯𝒊 is all the travel times at the same location, same time of day, 

and same day of week as 𝑇𝑖 in the previous eight weeks. As assumed in the null 

hypothesis, 𝑯𝒊 follows a Gaussian distribution, and therefore, 𝑯′𝒊 conform a standard 

Gaussian distribution with mean 0 and variance 1. The P-value of our statistical test is 

𝑃𝑉𝑎𝑙𝑢𝑒 = 𝑃(𝑍 > 𝑇′
𝑖) 

where Z is the standard Gaussian random variable. The Z-test is shown in Figure 19, 

where the area to the right of the black line 𝑇′
𝑖 and under the blue curve is the P-value of 

interest for the i-th incident detected by Twitter. 

 
Figure 19. Standard Z test for individual sample 

 

The final step of this hypothesis test is to define a threshold U for each incident i, where 

{
PValue > U                         𝐹𝑎𝑖𝑙 𝑡𝑜 𝑟𝑒𝑗𝑒𝑐𝑡 𝑡ℎ𝑒 𝑛𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠
PValue < U                                       𝑅𝑒𝑗𝑒𝑐𝑡 𝑡ℎ𝑒 𝑛𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠

                   

Also notice that “rejecting the null hypothesis” means that the Twitter-based incident 

corresponding to 𝑇′
𝑖 is truly a traffic incident. Here instead of defining one single 
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threshold U, we explore how U can influence the percentage of Twitter-reported 

incidents that reject the null hypothesis (namely being truly an incident). As we can see 

from Figure 20 that when the threshold of U is set to be around 0.25, almost all the 

sample travel times 𝑇′
𝑖 will reject the null hypothesis, in other words, their corresponding 

Twitter-reported incidents are actual.  

Overall, by comparing the travel time at the same time and location when an incident 

reported by Twitter occurs to that of previous eight weeks, we conclude that statistically 

those Twitter-based incidents are likely to be true. 

 
Figure 20. The influence of U on the rate of the samples rejecting the null hypothesis 

 

6 Audio-Based Incident Detection 

6.1 Methodology 

6.2 Data Description 

Due to the data availability, in this section, we only consider commercial stations, instead 

of some highway advisory radio (HAR)-specific stations (e.g., HAR376). We considered 

commercial audio stations from both Pittsburgh and Philadelphia. For Pittsburgh, we 

collected stream data from three audio stations: KDKA 1020, KQV 1410 and WXDY 

107.9. For Philadelphia, we collected stream data from two audio stations: KYW 1060 
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and WXPN 88.5. All the five audio stations report traffic news regularly. Specifically, 

KDKA reports traffic-related news every 10 minutes during 5-9am and 3-7pm, seven 

days a week; KQV reports news every 10 minutes during 6-9am, seven days a week; 

WXPY reports the same news as KDKA does. KYW reports news every 10 minutes 

during 3-6pm, seven days a week; WXPN reports news every hour during 5-10am, on 

weekdays only. 

One challenge of crawling and analyzing those station stream data is that traffic news 

only take up a very small fraction (time) of the entire data. We identify the time of day 

periods for each audio station when traffic news will be reported. In this way, audio data 

in those periods only will be extracted automatically using a program. Analyzing this 

subset of data is much more computationally efficient. The time of day periods when 

traffic news is reported is referred to as “traffic news pattern” in the remainder of this 

section. 

All the raw stream data were collected from one online source: http://tunein.com/. For 

Pittsburgh, we crawled data from August 25, 2015 to October 20, 2015. And for 

Philadelphia, we crawled data from September 2, 2015 to October 20, 2015. 

Then we follow the information given by Pittsburgh Highways 

(http://pittsburgh.pahighways.com/trafficinfo.html) and extract the traffic news pattern 

for each stations. For Philadelphia, we learned the pattern by manually listening to the 

audio streams. Based on the patterns information, we divided the stream data into two 

parts, with or without traffic news. Notice that the patterns we learned may vary by 

minutes from day to day, we define each sub-stream data with traffic news as a two-

minute stream around the possible reporting time points. For example, given that KDKA 

reports news at :02, :12, :22, :32, :42, :52, we define sub-stream data with traffic news as 

the stream :01-:03, :11-:13, :21-:23, :31-:33, :41-:43, :51-:53. Detailed patterns are shown 

in Table 7. 

 
Table 7. Traffic News Patterns in Each Audio Station 

 

To record the audio streams from online sources, we used a python package, timeshift. To 

extract the traffic-related streams, we used another python package, pymp3cut, to slice 

the MP3 recordings. The lengths of audio data with traffic news for this study are as 

follows: 6,486 minutes for KDKA, 6,902 minutes for KQV, and 9,686 minutes for KYW. 

6.2.1 Audio to text 

The reason we divided stream data as described above is that we need to parse audio 

stream data to transcripts with relatively high accuracy. However, most of existing tools 
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of speech recognition are not satisfactory because our stream data may be noisy and 

irregular.  

In order to convert the audio streams to texts, we tried several tools but few of them 

performed satisfying results. For example, we’ve tried CMU Sphinx, which is an open 

source speech recognition toolkit. This tool requires the adaptive acoustic models to 

obtain a relatively high translation accuracy. However, the existing acoustic models are 

hard to deal with the high noise in the traffic-news-related streams. In addition to CMU 

Sphinx, we also test several python-based packages (e.g., Speech Recognition). These 

packages cooperate free-version speech recognition tools, such as Google Speech, IBM 

Watson Speech to Text, etc. However, the free-version tools cannot identify the traffic-

news speeches, which have features such as fast speed, noisy background, and multiple-

people interaction.  

After several trials, we decided to apply a commercial tool: VoiceBase. For each account, 

the first 50 hours’ data for transcription are free in VoiceBase. After that, it charges $0.01 

per minute. We chose the Machine Transcription option. This option is cheaper than 

manual transcription, with reasonable accuracy sufficient for our study.  

6.2.2 Feature extraction, classification, and geocoding on the audio scripts 

Following the similar methodology of processing twitter data, we developed the 

algorithms of processing audio script as shown in Figure 21. It can be seen that after 

transforming the audio data into audio scripts, we treat these sentences analogous to 

tweets and use similar models trained by Twitter data to process classification and 

geocoding. 
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Figure 21. Audio flowchart (TI: traffic incident) 

 

6.3 Results 

The data processing results are shown in Table 8. It can be seen from Table 8 that 

although there are a very large amount of sentences from the audio records that could 

potentially lead to information about traffic incidents, the actual number of sentences that 

can be classified and geocoded is very few. First, there are a large amount of errors when 

translating audio data into texts. Oftentimes the translated text is hard to understand, even 

for humans. Road names in the scripts can have errors, or are sometimes ambiguous. It is 

hard to geocode using those road names. Second, the classifier developed specifically for 

Twitter data is not particularly suitable for audio transcripts because the “traffic 

dictionary” used in the Twitter model and the semi-Naive-Bayes classifier trained by the 

Twitter data may be biased.  

 
Table 8. Data processing results 

 

The scatter plots of geocoded TI (traffic-incident-related) sentences are shown in Figure 

22. It can be seen that the audio-reported traffic incidents are mainly distributed on 

highway roads. Regardless of the small quantity of the geocoded TI sentences, the quality 

of these audio-based traffic incidents is surprisingly good. The manual inspection shows 
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that only one of these 40 audio-based traffic incidents is false, an extremely high true 

positive rate. 

 
(a) Pittsburgh 

 
(b) Philadelphia 

 

Figure 22. Audio-reported traffic incidents in the City of Pittsburgh and 

Philadelphia 

To further validate these audio-based traffic incidents, we compare the audio-based 

incidents with RCRS data. Here we examine both audio-based incidents and RCRS 

traffic incidents from September 1, 2015 to October 20, 2015 for both cities: Pittsburgh 

and Philadelphia. We define the audio-data “coverage rate” as 𝑅𝑎: 
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𝑅𝑎 =
𝐴(𝑟𝑡, 𝑟𝑠)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑢𝑑𝑖𝑜_𝑏𝑎𝑠𝑒𝑑 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠
 

where 𝐴(𝑟𝑡, 𝑟𝑠) is the number of RCRS traffic incidents that lie within a temporal radius 

𝑟𝑡, and a spatial radius 𝑟𝑠, of all audio-based incidents. The value of 𝑅𝑎 reflects the 

portion of audio-based incidents that is already covered by RCRS. The variation of 𝑅𝑎 

with respect to 𝑟𝑡 𝑎𝑛𝑑 𝑟𝑠 is shown in Figure 23. It can be seen from Figure 23 that if the 

incidents taking place within 60 minutes temporal radius and 1 mile spatial radius can be 

assumed to be the same incident as in RCRS, the 𝑅𝑎 is 100%, meaning all of the audio-

based incidents is already covered by RCRS. 

 
Figure 23. The coverage rate of audio-based incidents 

 

 

6.4 Discussions 

In this section, audio data are processed to extract traffic-related information. The audio 

data is first transformed into text transcripts using audio-to-text software. Then the 

sentences of the transcripts are further classified into being a traffic incident related or not. 

Those traffic incident related sentences are geocoded. Finally, some traffic incidents, 

mostly on highways, can be identified.  Comparing the audio-based incidents with RCRS 

data shows that though the result of identifying audio-reported incidents is accurate, the 

information extracted from the audio data can be covered mostly by RCRS. 

This work has a few limitations: 

(1) The audio stations we are concerned about here are the major public stations in 

each city. However, some other stations, such as the highway advisory radio 

streams (e.g., HAR376), are not included in this project. The reason is that we 

could only crawl stream data from online publicly-available sources, whereas the 
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HAR376 is not available online. Future studies may consider such additional 

streams to extract additional useful information. 

(2) In order to convert the audio stream to text, we utilized the non-free online source 

(i.e., VoiceBase). Although it is the best we could find so far, it still contains 

certain noisy (or even wrong) transcriptions (especially in terms of the street 

names). To further validate the data, we may need to manually check the data or 

use some supervised learning techniques to train a better language model. 

(3) The classifier trained by Twitter data may not be particularly suitable for 

processing audio transcripts. This can be improved by intensively training the 

model with years of audio data and ground truth.  

(4) Due to the above limitations that calls for additional efforts for processing noisy 

audio data and the fact that most audio data reproduces RCRS, we therefore do 

not suggest further explore the potential of audio data in real-time incident 

detection.  

 

7 A Prototype Web Application for Twitter-based incident 

detection  
We developed a prototype web application to allow user to extract incident information 

and visualize it on the map. The web application consists of three components: a control 

panel on the left, an interactive map on the middle-right, and an interactive table on the 

bottom. The layout of the control panel is shown in Figure 24. Through the control panel, 

the users can  

(1) query historical Twitter incidents (if there are any) via the ”QUERY” button 

along with users’ choice of time periods;  

(2) visualize real-time Twitter incident via the ”UPDATE REAL-TIME” button;  

(3) reset the frequency of the database crawling from Twitter APIs;  

(4) input and remove the keyword of the underlying ”traffic dictionary” and/or any 

Influential Users included in the real-time data crawling. 
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Figure 24. Control panel of the web application 

 

The “Sensitivity” dropdown box has three options, (high, medium and low), indicating 

the confidence level of detected incidents. Option “high” extracts and visualizes only 

those incidents that are highly likely to be true reported by tweets, which can sometime 

omit those tweets that report a true incident with, however, a low confidence level due to 

our data mining model. On the other hand, option “low” extract and visualizes all 

incidents that are potentially reported by tweets, even though many may not contain 

incident information and are noises. Option “medium” provides a compromise between 

accuracy and coverage, and is the default value of the web application.  

The layout of the interactive data table is shown Figure 25. The contents of the table are 

descending by time with the most recent tweets listed on top, up to the past 12 hours. 

Every entry in the data table has a corresponding icon visualized on the map. To zoom to 

the icon/location on the map, the user can click on the button ‘Show on map’. 
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Figure 25. Data table layout 

 

The layout of the pop-up is shown in Figure 26. The popup is activated when the user 

left click on the icon on the map. In this pop-up, the details about the Twitter incident, 

Twitter user name/ID, texts, time, and classified category is shown. If the users find the 

incident category is incorrect, they can manually submit a new label to the web 

application. The web server will update the labels and correct the data mining model 

periodically. 

 
Figure 26. Pop-up layout 
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8 Conclusions 
 

We apply Natural Language Processing algorithms on the massive database of CMU-

Gardenhouse historical Twitter database to train a data mining model that performs 

accurate classifications on tweets for incident detection. To test the performance of these 

algorithms, tweets have been crawled from Twitter-REST-API and Twitter STREAM 

API. By extensively mining the massive data of CMU Gardenhouse Twitter database, we 

applied Naïve Bayes and Supervised Latent Dirichlet Allocation on the task to classify 

whether or not a tweet is incident related, and to which incident categories it belongs. 

Additionally, we developed a series of geo-parser and geocoder to extract locational 

information inside of Twitter texts. To further test the model, we applied the model to the 

real-world data in Sep. 2014 for both Philadelphia and Pittsburgh areas, and in Aug. 2015 

for Philadelphia area.  

Answers to questions proposed in Section 1 are summarized as follows: 

(1) How frequently do Twitter users in selected region and corridor tweet about 

incidents? 

A: In the Philadelphia area, Aug 2015, there are 1390 tweets that contain information 

about the time, category, and location of traffic incidents. Note that these tweets are 

extracted from a small portion of total tweets that are public accessible from REST API. 

(2) What types of incidents do they tweet about? 

A: They tweet mostly about accidents and road work, and sometimes special events.  

(3) Are there any locations about which people tweet more often? 

A: People are more likely to tweet about incidents near the center of the city. The number 

of incidents reported by Twitter is much greater than RCRS, and linearly decreases 

outwards with respect to the distance from the city center. 

(4) What is the ratio of overall Twitter data in selected region and corridor to data that 

is relevant to incidents? 

A: About 10% of our acquired tweets in the historical dataset were relevant to incidents. 

Note that this does not mean 10% of the tweets contain incident information, because we 

have used adaptive data acquisition to crawl as many TI tweets as possible. In the real 

world, the percentage of tweets that report incident is very small. 

(5) Are there any particular times (of day/year) or conditions for which users tweet 

more about incidents? 
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A: People tend to tweet more often on weekends and during the daytime instead of night 

time, especially during the rush hours. 

 

(6) Can social network analysis techniques identify key influencers who tweet about 

incidents? 

A: Yes, by mining the full CMU-Gardenhouse database, we have identified more than 40 

influential users who routinely report incidents via tweets which accounts for 88% of all 

incidents reported by tweets. These users are used in the real-time data acquisition 

process. 

To extend offline version of the Twitter-based incident detector into an online version, 

we applied a series of improvements and modifications on the offline Twitter-based 

incident detector to make it more efficient under a standard Unix Pipeline framework. 

Specifically, we successfully answered the following questions, 

(7) How to identify in real time if a tweet is incident related?  

A: We used the Semi-Naïve-Bayes classifier trained in Section 4, and found it can 

achieve similar performance in the real time. 

(8) How to classify events in all incidents related tweets in the real time? 

 

A: We used the Supervised Latent Dirichlet Allocation (sLDA) classifier trained in 

Section 4, and found it can achieve similar performance in the real time. 

(9) How to infer the geo-location of the tweet and map it to the road network? 

A: We used the geo-parser and geo-coder trained in Section 4, and found it can achieve 

similar performance in the real time. 

(10) What percentage of incidents can be detected and what percentage of those can 

be precisely geo-coded?  

A: In the real time, about 43% of our acquired tweets were relevant to incidents. Note 

that this does not mean 43% of all the tweets contain incident information, because we 

have used the specially trained keywords and influential users to crawl real-time tweets. 

In the real world, the percentage of tweets that report incidents is very small. In addition, 

16% of the TI tweets could be geocoded.  

 

(11) How timely is the Twitter-based incident detector? 

 

A: There are several unknown components in the Twitter-based incident detector, such as 

the time from a tweet is posted to the time it can be actually crawled from the APIs. 
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Given a tweet can be acquired through the APIs, the processing time for classification 

and geocoding is minimal and negligible.  

 

(12)  How to establish a score system to indicate confidence levels of valid incident 

detection?  

A: The score is the probability P(Y|X) generated by the Semi-Naïve-Bayes classifier, 

discussed in Section 3. Y is the indicator of the whether or not a tweet is a TI tweet, and 

X is the tweet text.  
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10 Appendix: Supervised Latent Dirichlet Allocation (sLDA) 
To formalize the notation, we define here: 

 Word: an item from Traffic Dictionary indexed by {1,...,V}. We represent words 

using unit-basis vectors that have a single component equal to one and all other 

components equal to zero. 

 Tweet: a sequence of N words. 

 Corpus: a collection of M tweets. 

 

sLDA assumes the following generative process for each tweet w in a corpus D: 

1. Choose N~Poission(𝜁) 

2. Choose 𝜃 ~Dir(𝛼) 

3. Choose 𝜑 ~Dir(𝛽) 

4. For each of the N words 𝑤𝑛: 

(a) Choose a topic 𝑧𝑛~Multi(𝜃) 

(b) Choose a word 𝑤𝑛 from p(𝑤𝑛 |𝑧𝑛, 𝜑), a multinomial probability conditioned 

on the topic 𝑧𝑛 and prior 𝜑. 

where Poission(𝜁) is a Poisson distribution with parameter 𝜁, Dir(𝛼) is a Dirichlet 

distribution with parameter 𝛼, Multi(𝜃) is a Multinomial distribution with parameter 𝜃, 

and p(𝑤𝑛 |𝑧𝑛, 𝜑), is a conditional distribution of 𝑤𝑛. 

The generative process described above is shown in Figure 27. 
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Figure 27. sLDA plate model 
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